A possible relationship between gluconeogenesis and glycogen metabolism in rabbits during myocardial ischemia.

نویسندگان

  • Raquel R DE Aguiar
  • Daniela F Vale
  • Renato M DA Silva
  • Yolanda P Muniz
  • Fernanda Antunes
  • Carlos Logullo
  • André L A Oliveira
  • Adriana J DE Almeida
چکیده

Ischemia is responsible for many metabolic abnormalities in the heart, causing changes in organ function. One of modifications occurring in the ischemic cell is changing from aerobic to anaerobic metabolism. This change causes the predominance of the use of carbohydrates as an energy substrate instead of lipids. In this case, the glycogen is essential to the maintenance of heart energy intake, being an important reserve to resist the stress caused by hypoxia, using glycolysis and lactic acid fermentation. In order to study the glucose anaerobic pathways utilization and understand the metabolic adaptations, New Zealand white rabbits were subjected to ischemia caused by Inflow occlusion technique. The animals were monitored during surgery by pH and lactate levels. Transcription analysis of the pyruvate kinase, lactate dehydrogenase and phosphoenolpyruvate carboxykinase enzymes were performed by qRT-PCR, and glycogen quantification was determined enzymatically. Pyruvate kinase transcription increased during ischemia, followed by glycogen consumption content. The gluconeogenesis increased in control and ischemia moments, suggesting a relationship between gluconeogenesis and glycogen metabolism. This result shows the significant contribution of these substrates in the organ energy supply and demonstrates the capacity of the heart to adapt the metabolism after this injury, sustaining the homeostasis during short-term myocardial ischemia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracing ischemic memory by metabolic pathways: BMIPP and beyond

Myocardial ischemia (MI) resulting in infarction is an important cause of mortality and morbidity worldwide. Acute ischaemia rapidly impairs myocardial contractile function. Myocardial dysfunction persisting for several hours after transient non-lethal ischaemia, eventually resulting in full functional recovery is termed as myocardial stunning. Hibernation is now thought to be...

متن کامل

Renal ischemia/reperfusion remotely improves myocardial energy metabolism during myocardial ischemia via adenosine receptors in rabbits: effects of "remote preconditioning".

OBJECTIVES This study examined the changes in myocardial energy metabolism during myocardial ischemia after "remote preconditioning" and investigated the involvement of adenosine receptors in the mechanisms of this effect. BACKGROUND Recent studies have indicated that a brief period of ischemia and reperfusion (ischemic preconditioning, PC) in a remote organ reduces myocardial infarct size (I...

متن کامل

Impact of low-flow ischemia on substrate oxidation and glycolysis in the isolated perfused rat heart.

Interventions that stimulate carbohydrate oxidation appear to be beneficial in the setting of myocardial ischemia or infarction. However, the mechanisms underlying this protective effect have not been defined, in part because of our limited understanding of substrate utilization under ischemic conditions. Therefore, we used (1)H and (13)C NMR spectroscopy to investigate substrate oxidation and ...

متن کامل

Assessment of glycogen turnover in aerobic, ischemic, and reperfused working rat hearts.

Glycogen and its turnover are important components of myocardial glucose metabolism that significantly impact on postischemic recovery. We developed a method to measure glycogen turnover (rates of glycogen synthesis and degradation) in isolated working rat hearts using [3H]- and [14C]glucose. In aerobic hearts perfused with 11 mM glucose, 1.2 mM palmitate, and 100 μU/ml insulin, rates of glycog...

متن کامل

Exercise training has restorative potential on myocardial energy metabolism in rats with chronic heart failure

Objective(s): Exercise training is a well-known accelerator for the treatment of chronic heart failure (CHF). The current study aimed to investigate the restorative effects of aerobic interval training (AIT) intervention on myocardial energy metabolism in CHF rats. Materials and Methods: Post-myocardial infarction (MI) heart failure animal model was established. The Sprague-Dawley rats were ran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Anais da Academia Brasileira de Ciencias

دوره 89 3  شماره 

صفحات  -

تاریخ انتشار 2017